11/11/2019

LabelImg - Annotation

1. LabelImg 설치 및 수정 

가장 많이 사용되어지는 Annotation Tools 인것 같으며, 저장되는 형식은 XML이며 Pascal VOC 와 YOLO로 구분되어 저장가능하다.

LabelImg 설치방법 및 소스
  https://github.com/tzutalin/labelImg

  • LabelImg Download 및 필요 Package 설치 
$ cd /works/custom
$ git clone https://github.com/tzutalin/labelImg.git
$ cd labelImg


$ sudo apt install pyqt5-dev-tools
$ sudo pip3 install -r requirements/requirements-linux-python3.txt
$ make qt5py3


소스기반으로 설치한 이유는 직접소스에서 HotKey를 변경하기 위해서 상위와 같이 설치
만약 쉽게설치하고 싶다면 pip install 로도 설치가능

참고
  https://eehoeskrap.tistory.com/331


  • Source 에서 직접 아래와 같이 HotKey 변경 
나의 경우 빠른 Annotation을 위해서 아래와 같이 Hotkey를 소스에서 수정하였다.
소스를 보면 python으로 작성이 되어있어 쉽게 이해가능하므로, 소스로 설치하여 본인이 원하는 곳을 고치자.

$ vi labelImg.py 
 212         openNextImg = action(getStr('nextImg'), self.openNextImg,
 213 #                             'd', 'next', getStr('nextImgDetail'))
 214                              'f', 'next', getStr('nextImgDetail'))
....
 216         openPrevImg = action(getStr('prevImg'), self.openPrevImg,
 217 #                             'a', 'prev', getStr('prevImgDetail'))
 218                              's', 'prev', getStr('prevImgDetail'))
....
 223         save = action(getStr('save'), self.saveFile,
 224  #                     'Ctrl+S', 'save', getStr('saveDetail'), enabled=False)
 225                       'a', 'save', getStr('saveDetail'), enabled=False)
....
 240         createMode = action(getStr('crtBox'), self.setCreateMode,
 241 #                            'w', 'new', getStr('crtBoxDetail'), enabled=False)
 242                             'e', 'new', getStr('crtBoxDetail'), enabled=False)
..
 246         create = action(getStr('crtBox'), self.createShape,
 247 #                        'w', 'new', getStr('crtBoxDetail'), enabled=False)
 248                         'e', 'new', getStr('crtBoxDetail'), enabled=False)


Hotkey
w Create a rect box   :  e 변경
d Next image            : f 변경
a Previous image      : s 변경
Ctrl + s Save               : a 변경

상위와 같이 변경한 이유는 한 손에 전부 넣어 빨리 편집하기위해서 Hot Key를 변경


  • LabelImg 실행  (Args는 옵션)
1st  Arg :  수정할 Image PATH
2nd Arg :  Annotation 할때 붙여지는 Class 정의된 File을 직접 선택가능 


$ python3 labelImg.py 

$ python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] 


  • 실행하면 좌측에 메뉴
  1. OpenDir   :    Image 위치설정
  2. Change Save Dir :  Xml 저장위치설정

실행시 이전에 저장되어진 Xml 저장위치 기준으로 XML를 가져와서 BBOX를 표시를 해준다.







    https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html#annotating-images


1.1  파일이름 변경 방법 

본인이 원하는 DATA Image들을 다운을 받고 여러 파일들을 한꺼 번에 이름을 변경하고자 할때 많을 것 같다.
아래와 같이 rename 명령어를 사용하거나 간단하게 Shell script를 이용하여 만들어서 이를 해결하자

  • rename 명령어를 이용하여 파일이름 변경
$ ls 
image_01.jpg image_02.jpg image_10.jpg 

$ rename 's/image/image_test/' *.jpg 
image_test_01.jpg image_test_02.jpg image_test_10.jpg 

rename 명령어로 특정 Pattern이 있는 것을 찾아 이름을 변경을 해보자.
만약 특정 Pattern이 없다면 아래와 같이 Shell Script를 사용해서 본인이 원하는 대로 변경하자

  • rename.sh shell script 작성(rename 명령어로 한계가 있어 Shell Script 직접작성함)

  • rename.sh shell script 실행 
$ cd ~/works/custom/data/images
$ chmod +x rename.sh
$ ./rename.sh          // *.jpg 파일들을 찾아 image_xx.jpg로 변경 
or 
$ ./rename.sh Image_data .png  // *.png 파일들을 찾아 image_data_xx.png 로 변경 


1.2  DATA SET 구성 과  Annotation 진행 


  • DATA SET 구성 
아래와 같이  구성하고 TEST할 Image들을 가져와서 Image 안에 넣어 구성을 한다.

$ cd ~/works/fire/data
$ mkdir -p images/train
$ mkdir -p images/test
$ mkdir -p annotation/train
$ mkdir -p annotation/test

$ tree -L 2
.
├── annotation
│   ├── test    // test xml  (pascal voc type)
│   └── train   // train xml (pascal voc type)
└── images
    ├── test    // test image (eval)
    └── train   // train image



  • LabelImg  class 정의 
$ cd /works/custom/labelImg

$ vi data/fire_classes.txt
fire
smoke


주의
상위 정의된 이름과 label_map.pbtxt에 정의된 이름이 완전히 동일해야 한다.
XML에서 이름만 가지고 찾아 찾기 때문에


  • labelImg (train)
Image path 와 class text path 과 함께 실행
좌측 Change Save Dir 로 XML 저장장소  ~/work/fire/data/annotation/train 변경

$ python3 labelImg.py ~/works/fire/data/images/train  data/fire_classes.txt  



  • labelImg (test)
Image path 와 class text path 과 함께 실행
좌측 Change Save Dir 로 XML 저장장소  ~/work/fire/data/annotation/test 변경
변경을 하자마자 바로 적용이 안되므로 Prev Image / Next Image 로 Refresh

$ python3 labelImg.py ~/works/fire/data/images/test  data/fire_classes.txt 



1.3  label map file 생성 및 정의  

본인이 원하는 item을 정하여 각각의 name id를 정의해서 넣자

  • lable map 만들기
$ cd ~/works/fire/data  // 상위 이름과 동일
$ vi label_map.pbtxt
item {
    id: 1
    name: 'fire'
}

item {
    id: 2
    name: 'smoke'
}



  https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html#creating-label-map


1.4  TF Record File 변환 

TF Record 는 기본으로 Tensorflow가 설치가 되어야 가능하므로 이전에 설치진행 혹은 Docker에서 진행

Tensorflow Manual
  https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html#creating-tensorflow-records

  • Tensorflow 실행 및 준비  
$ docker run --gpus all --rm -it \
--shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \
-p 8888:8888 -p 6006:6006  \
-v /home/jhlee/works/fire/data:/data \
--ipc=host \
--name nvidia_ssd \
nvidia_ssd

root@3aac229c45c3:/workdir/models/research# pip install lxml    //XML를 위해 필요 

root@3aac229c45c3:/workdir/models/research# vi create_pascal_tf_record.py  //아래의 소스로 작성 

  • Pascal SET 을 TF Record 생성 
주의해야할 것은  --data_dir을 /data/images/train or /data/images/test 로 하면 안된다
왜냐하면 아래의 소스를 보면 --data_dir 과 XML의 folder로 찾아 넣는다.

root@3aac229c45c3:/workdir/models/research#  python create_pascal_tf_record.py \
 --data_dir=/data/images \
 --annotations_dir=/data/annotation/train \
 --label_map_path=/data/label_map.pbtxt \
 --output_path=/data/train.record

/workdir/models/research/object_detection/utils/dataset_util.py:75: FutureWarning: The behavior of this method will change in future versions. Use specific 'len(elem)' or 'elem is not None' test instead.
  if not xml:

root@3aac229c45c3:/workdir/models/research#  python create_pascal_tf_record.py \
 --data_dir=/data/images \
 --annotations_dir=/data/annotation/test \
 --label_map_path=/data/label_map.pbtxt \
 --output_path=/data/test.record

/workdir/models/research/object_detection/utils/dataset_util.py:75: FutureWarning: The behavior of this method will change in future versions. Use specific 'len(elem)' or 'elem is not None' test instead.
  if not xml:


2.  create_pascal_tf_record.py 소스 분석 

create_pascal_tf_record.py를 간단히 분석을 해보면, XML 기반으로 JPEG Image를 넣어 TF Record를 만들어 넣는다.

  https://github.com/vijendra1125/Tensorflow_Object_detection_API-Custom_Faster_RCNN/blob/master/extra/create_pascal_tf_record.py